
We note that a representation for the concentration in the form of the series (9) holds 
everywhere, with the exception of the neighborhood of the rear critical point 0 S O(Pe -~/2) 
[i], where the thickness of the diffusional boundary layer ~ = [j]-* becomes infinitely 
great. Analogously to [7] it can be shown that the contribution of this region to the total 
diffusional flow to the drop is on the order of O(Pe-*/=). Therefore, the calculation of 
succeedinE terms of the series (9) leads to an improvement of formula (ii) only in obtaining 
a solution for the concentration in the region of the rear critical point. 
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EQUATIONS OF THERMOHYDROMECHANICS OF A TWO-PHASE POLYDISPERSE MEDIUM WITH 

PHASE TRANSITIONS HAVING A CONTINUOUS PARTICLE-SIZE DISTRIBUTION 

I. N> Dorokhov, V. V. Kafarov, 
and E. M. Kol'tsova 

UDC 532.529.5:66.065.5 

Sl. We consider a heterogeneous mixture of two phases, in which the first phase is the 
carrier phase, while the second phase is present in the form of individual solid particles 
of different sizes, direct interaction between which can be neglected. We adopt the hypothe- 
sis of quasihomogeneity [1-3]: the distances at which the parameters of the flow vary signi- 
ficantly are much greater than the sizes of the particles themselves and the distances between 
them. At each point of the volume occupied by the liquid we can introduce the volumetric con- 
tents of the phases ~, and the mean densities Pi; here 

0 
P = P l + P ~ ,  ~1 + ~ = l ,  ~ 0 ,  Pi = P ~ ,  

where the subscript I relates to the carrier phase, and 2 to the whole disperse phase; Pi is 
the density of the i-th component of the mixture. The dispersivity of the second phase is 
characterized by the function f(r), so that f(r)dr is the number of particles in unit volume 
of the mixture, whose dimensions (volumes) lie within the limits from r to r + dr. The den- 
sity of the second phase is continuously distributed in the segment [0, R], where R is the 
dimension (volume) of the largest particle. Consequently, we can write 

R R 

~2 = . f / ( r> rdr, p~ = .[ p~] <r> rdr, 
0 0 

where P~ is the true density of the disperse phase. We set f(O) = f(R) = O. It is postu- 
lated that there are sufficient particles of all sizes so that it can be assumed that the car- 
rier phase and any given set of particles (whose sizes lie in the segment r', r" , where r' 
and r" are any given values from the set [O, R]) are continua, filling exactly the same vol- 
ume. The carrier phase $s described by a model of a viscous liquid. Here, as the tensors 
of the surface forces o~ Z and the tensors of the viscous stresses T~ l) we take [i, 3] 

l 
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where ~kl is a Kronecker symbol; X x, ~ are the viscosity coefficients; e~ l is the tensor of  

the deformation rates of the carrier phase. 

w We introduce a phase space with the coordinates x ~, x i, x a, r, where x x, x 2, x a 
are the coordinates of ordinary Euclidean space; r is the volume of a particle. In the phase 
space~ we isolate a fixed volume V* bounded by the surface S*. Then the equation of the 
conservation of mass for the disperse phase can be written in the form 

C 2--7" (p~r)dV* = -- ~ p~/rv~dS * + f 9~i (7~- ~l)dV* 
~, (2, i) 5 "  Vm 

(dV* = dVdr = dxldz~dxSdr). 

The first term in the right-hand part of Eq. (2.1) characterizes the influx of mass through 
the surface $*, where v is a vector, whose coordinates are dxX/dt, dx2/ct~ dxa/dt, dr/dt; the 
second term characterizes the change in the mass of substance in the volume V*. due directly 
to phase transs The phase transitions can be arbitrarily divided into two reactions: 
growth of the particles (for example, the growth of crystals wlthcrystallizatlon) with the 
volumetric rate X and the dissolBtion of particles with the volumetric rate ~, so that dr/ 
dt ~ k --B = B, where ~ is the observed rate of change in the volume of particles (~ ~ 0, 

~ o). 

The equations of the conservation of mass of the carrier phase and the mass of the salt 
in the solution in the volume V of ordinary Euclidean space with the coordinates x x, x ~, x ~, 
bounded by the surface S, have the form 

R 

,J Ot d V = - - ,  pavidS-- , (L--tt) p~ (2 ,2)  
V S V 0 

: V S V 

R 

f" (~" -- p) P ~ 
0 

(2.,3) 

where vx is the velocity of the carrier phase; c is the mass concentration of salt in solu- 
tion; m is the ratio of the molecular weights of the anhydrous salt and the crystal hydrate, 

The equations of conservation of momentum for the disperse and carrier phases have the 
form 

0 

i :  - y + S + S + 
V* S t ~ '  V* 

+ .f ]rp~ + .f "[P~ P~ dV*; (2.4) 
V* V* 

S S V 

+ y toUr]r(12) d r d V -  I (9~fLv(t2)--p~fgv(20)dr dV. (2 .5)  

The first terms in the right-hand parts of Eqs. (2.4), (2.5) give the influx of momen- 
tum of the corresponding phase through the surface S* and S; v2(r) is the velocity of parti- 
cles of the dimension r; the second and third terms are the actions of the external surface, 
and mass forces, characterized, respectively, by the tensors ~ c~ and the vectors Fi, F2; 
here o~l= 0; the last term characterizes the change in the momentum of the corresponding 
phase due to phase transitions; vi2(r) is the velocity of the carrier phase at the contact 
surface of the phases; vzx(r) is the velocity of particles of size r at the phase-contact 
surface. The force of the interaction between the carrier phase and the inclusions is repre- 
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sented in the form [i] 

R R R 

t'P~]rr{'2) dr .i' r ]vp 'dr  + . ( of~ = -  .2 rf(12)dr 
0 0 0 

here the first term on the right is connected with the action of the field of the pressure on 
the inclusions (the Archimedes force), while the second term characterizes the force interac- 
tionof the phases and is due to three effects [i]: f(x2) = ff + fm + fr, where ff is the com- 

ponent arising due to viscous forces with interaction between the phases; fm is the force con- 
nected with the effect of the "added mass"; fr is the Magnus or Zhukovskii force. 

Applying the Gauss--Ostrogradskii theorem to Eqs. (2.1)-(2.5), we obtain a description 
of the system in the form of differential equations 

af 0 
-~- + v (/v2) + ~ fin) = o; 

R R 

Op, , : - -  j p~ ldr ;  P, =gf -- ( c - - m )  j o oF' ~- V (plVl) ' a~ ' p2frtdr; ( 2 . 6 )  

0 0 

D2 v 2  ' F 0 0 g--fir- = --  ]rvPl  + gf<l~) n- g . ,  + P2f ~, (v02) - -  v.,) - -  f}2[[~ (v<:~j) - -  v2); 

where 

d l V 1  __ __  

, P l  d t  

R R 

=IVP, + V'~T~ ~ -  S p~ + @,FI-- ,l'p~[[~,(v,,z,-- vl) - 
0 0 

- -  ~ (v<211 - -  v l ) ]  dr, 

g = p~ di/dt = O/Ot + v~ (O/Oxk); 

D j D t  = OIOt q- v~ (010~ k) q- ~] (O/Or). 

(2.7) 

w We adopt the hypothesis of the main thermodynamic characteristics with respect to 
t h e  m a s s e s  o f  t h e  p h a s e s .  A n a l o g o u s l y  t o  [ 1 ,  4 ] ,  we i n t r o d u c e  t h e  s u r f a c e  c o m p o n e n t  o f  t h e  
internal energy of the mixture, taking account of the surface (in accordance with Gibbs). 
Then we can write 

R 

0u = 0+, + (p ru  + luS)dr; 
0 

R 

oK P , ~  S v.~ 2 + P~ dr, _ - g -  

o 

R 

where p =pl + (p~rdr; u, ul are the specific internal energies of the whole mixture and the 
0 

carrier phase, respectively; u2(r) is the specific internal energy of particles of size r; 

u~ = 4~a2uc; u~ and u O are the surface energies, attributed, respectively, to one inclusion 
and to a unit of surface; a is the radius of the particles; K is the kinetic energy of the 
mixture 7 determined without taking account of small-scale effects (which will be neglected 
in the present work). 

Following reasoning, and carrying out computations, analogous to those given in detail 
in [i, 3], we obtain differential equations for the internal energies of the carrier phase, 
of particles of size r, and of the phase interface 
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R 

d~ u~ I �9 p2/~Xl(i2) (r) - -  P~ dt { _  o o -- p~j~lXt(21 ) (r) qlo (r)} dr - -  Vql + P,Qt + 
o 

B R 

�9 ~et + x~gf.2l(v~ - - v ~ ) d r +  __p)~ (V l t2 ) - -v t )2+  pO/p (V(211-- 1) dr; 
2 2 

o 
(3.~) 

Dg u g--~-  = -- - -  p2/~.r2~2t) (r) -- q2~(r) + gQ~ -~- • I -- vz) + 

+ pop, (~(m 2- ' ')~ P ~  (v(2"2- ~') ' '  (3.2) 

[ D~u~ 
--07- = - O~xo(t2) (r) ~- O~Zo(2, (r) + 

+ qlo (r) + q2a (r) + ]X 26s 26s a - -  [ p  - ' ~ - '  ( 3 . 3 )  

w h e r e  x t ( ~ 2 ) ( r )  , x i ( 2 1 ) ( r )  a r e  t h e  h e a t  f l u x e s  f r o m  t h e  t - t h  p h a s e  t o  t h e  s u b s t a n c e  u n d e r g o -  

ing the transformation from the 1-st phase to particles with the size r, and from particles 
with the size r to the 1-st phase, respectively (i = i, 2, ~); q2q(r), qto(r) are the heat 
fluxes, referred to unit volume of the mixture, from particles of size r to the phase inter- 
face, and from the carrier phase to the phase interface, respectively; qt is the external 
heat flux (thermal conductivity); qt = --k2VTt; X2 is the thermal-conductivity coefficient of 
the material of the 1-st phase; gQ2, p~Qt are the powers of the volumetric sources of heat; 
the coefficient xi(r) indicates the fraction of the kinetic energy of the mixture due to the 
force interaction between the carrier phase and particles of size r, going over directly into 
the internal energy of the i-th phase [~(r) + x 2(r) = I];~ S is the surface tension of the 
phase interface, 

We separate out a fixed volume V, bounded by the surface S. By analogy with [2], we 
define the concept of the substantial derivative of the total energy of the mixture, repre- 
senting the change in the total energy going to a unit volume of the mixture fixed in space, 
after subtraction of the change connected with the influx of mass through the boundaries of 
the isolated volume: 

v s 

+ g u~@ v ~ + f u o v  2 dr d S @ p - - ~ - .  
o 

A f t e r  a p p l i c a t i o n  o f  t h e  G a u s s - O s t r o g r a d s k i i  f o r m u l a  t o  ( 3 . 4 ) ,  we o b t a i n  

-v 

dE dl de 9 
P-'~'=Pl-~" Ul -~- -{- g "dt- U.~-- -t- [ dt l dr + 

R 

s(p(0 o )1[ 0( 4)] o -W(I~)+T~(I@ + ( - o ~  ;~+pd~) u l+  + 
o 

0 v2 
(3.5) 

Starting from the determination (3.5) of the equations of motion (2.6), (2.7) and the equa- 
tions for the components of the energy of the mixture (3.1)-(3,3), we obtain an explicit ex- 
pression for the substantial derivative of the total energy of the mixture 
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R 

dE f 9~ (u I - -  u. 2 q- x2(t2 ) (r) '-- xt(t2 ~ (r) -1- 
0 

R 
pl p~ 2gs ) ~ o 

- 0 

, , ~ P t  P2 2 a s  ] 
- -  (xt(21)(r) -~- x2(21)(r) T Xo(21)(r)) ~ Pl 0 O~ p0= dr - -  

R 

- -  V (czlplvx) - -  p l y  2 dr -c V Tt vl - -  

0 ~176 
R R 

- - V q l  + p l F 1 V 1 - ~ . f g F ~ v 2  dr +plQI § 
0 0 

/t R R 

- -  ~ - - b 7  /Zr u. . - t -q- .  : "o b -~-~ (i~,uo) -: ~ -  ( 1 ~ )  dr. ( 3 . 6 )  

By virtue of the definition of f, the last three terms are equal to zero, In addition~ 
from the sense of d E / d r  i t  f o l l o w s  t h a t  t h e  c h a n g e  i n  t h e  t o t a l  e n e r g y  o f  t h e  m i x t u r e  i s  de , -  
termined only by the external action. Therefore, the expressions in the right-hand part of 
E q ,  ( 3 . 6 )  ( t h e  t y p e  o f  s o u r c e s  o f  e n e r g y  d u e  t o  p h a s e  t r a n s i t i o n s )  s h o u l d  b e  e q u ~ t o  z e r o ,  
Introducing the enthalpy of the phases (i i = u i + pi/pl, i -- I, 2), we obtain 

2c~ s 
x~(l:) ~- x2(t2) -}- xa(:2) = L, - -  i I q- p~a ' 

2o S 
~:'.,:2i) =- x2(2z) + x,~(21)= i~ - -  i~ - -  p~---~. 

Quantification of the model demands determination of the energies ~K(ij)' 

mentary relationships will be postulated as 

XI(12 ) = X2(12 ) = Xl(21 ) = X2(21 ) = 0 ,  

These supple- 

(3.7) 

In accordance with the relationship (3o7), the role of a source or sink of heat, required for 
the phase transitions, is played by the surface phase. 

w Crystallization is generally directly considered as a process taking place in two 
consecutive steps [5]: mass transfer from the carrier phase to the growing face of the crys- 
tal, and the crystallization process proper, i.e., incorporation of the structure particles 
of the dissolved substance in the crystal lattice. The first stage can be described using 
the equation of external mass transfer 

p,_,q - I~F~ ( c - -  c:'~, ( 4 . 1 )  

where c, c* is the concentration of the substance in the main mass of the solution and at the 
surface of the crystal; B is the mass-transfer coefficient; F s is the surface of the crystal. 

The mass, arriving at the boundary of the crystal, must enter into it due to a reaction 
at the surface, i.e., 

q 

o: ~ = ~rs (c*,--~)~, (4.2) 

where c e is the equilibrium concentration, corresponding to the temperature at the surface 
of the crystal To(r) ; ~c [T2(r), To(r)] is the rate constant of the crystallization; n is the 

order of the kinetic "reaction." 

If c* can be determined from Eqs. (4.1). (4.2), then, substituting c* into Eq. (4.1), 
the growth rate of the crystal can be determined. For example, if n = i (in the case of a 
"reaction" of first order), then 
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~, fi~c 
~:-~ - ~ § fie F ,  (c - -  %).  

Analogously to [i], we take z ~ = I, • ~ = 0; i.e., we shall postulate that the fraction 
of the kinetic energy due to the force interaction between the carrier and disperse phases 
goes over directly into the internal energy of the carrier phase. It can be assumed that, 
at the phase-contact surface, the relationship is satisfied 

v(~) (r) = v(~e)(r) = v2( o .  ( 4 . 3 )  

It is important to note that, with the relationships adopted (3.7), (4.3)~ there is no 
further need for the introduction of arbitrary growth rates of the crystal and its dissolu- 
tion, %, u. In this case, all the effects can be taken into consideration by the real growth 
rate o f  the crystal ~ ffi ~ -- ~. 

Thus, the complete system of equations has the form 

el I 

D$uf$ 
g--"gi-- 

R 

" ~  + V ( P D h ) =  = S P~ 
o 

oi ~ (/~) = o, ~-  + v (/v..) + 

R R 

dlVl _ --  - -  cz'VP' -{- V k ~ - -  S gf('2) dr q- p x F , -  ~ p~ (v= (r) - -  vl) dr, 
0 0 

v 2 (r) = VP. F~ (r), -~ + [(~2)(r) + 

R 

d1% hz kz j' gfo2) Pl ~ = ~i et -{- (v, - -  v~) dr - -  
0 

R R 

_ pOfn (v , - -  vD' dr - -  qlo(r)dr -}- vq~ --  plQ1. 
2 

o b 

D~uta 
= - -  q2~(r) + gO~ (r), ] -D-'i- = q ~  (r) q- q2o (r) - pofq (4  - i~), 

R 

[pO (c) = (p~ --  c), a~ + J" r /dr  = l ,  
0 

Pl = P~ g' = 02~ pO = const, 

0 dl 0 _{_ v~ O D2 0 v h 0 _]_ l l . ~ .  
d'-T "~ ~ ax g ' ~ : ~ -~- 2 ax---f 

With n = i 

t~13r F ,  (c - -  c e (r ) ) ,  p O  _ ~ +  ~c 

Ce =ce(T1) ;  ~c=lBc(T~ ' Ta(r))" 

The value of B can be determined from the equation 

Nu = A Pr Re(12) , 

where 

B e ( i 2 ) = ( l v l - - v ~ l / v l ) a l ;  P r = v l / O l ;  N u = ~ a l / D 1 ;  

vx i s  t h e  v i s c o s i t y  o f  t h e  s o l u t i o n ;  D~ i s  t h e  d i f f u s i o n  c o e f f i c i e n t  i n  t h e  c a r r i e r  p h a s e ;  
q i ~  = 4 ~ a 2 f B i ( T i -  T a ) ;  $ i  i s  t h e  c o e f f i c i e n t  o f  h e a t  t r a n s f e r  f rom t h e  p h a s e  i n t e r f a c e  t o  

the i-th phase; ~ = --~2VT~; ii-----c Ah+ I-- two--A-t(21 ) (according to [6]); Ah = Ah(T~, 
-- m -m TI 

c) is the heat of solution at th = saturation temperature; iw----AHw(~ q- 
i(21) 

, J  
298 
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TI T2 

AH~208 ) @ .[ c~dT~; i~ = AH2(298) @ y c~dT2; AH~298), AH2 (29e) are the standard enthalpies of water and 
298 298 

the substance; Cw, c2 are the specific heat capacities of water and the substance of the par~ 

t i c l e s ,  r e s p e c t i v e l y .  

If we n e g l e c t  t he  q u a n t i t y  Dau~/Dt, then ,  t he  e q u a t i o n  of  the  i n f l u x  of  hea t  to  the  
phase interface leads to a finite algebraic equation for T 

4 = a V  [fh ( r ,  - To) -4- f4 (T2 - -  r , , ) l  - o ~ n  (4  - - / 1 )  = o. 
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FLOW OF GENERALIZED NEWTONIAN AND BINGHAM LIQUIDS IN 

AN ANNULAR CAPILLARY 

I.B. Muratov L~C 532.135;532~546 

The laws of motion of Newtonian [i. 2], viscoplastic [3-5], and non-Newtonian [6] liq- 
uids in an annular capillary (in the gap between two coaxial cylindrical tubes) have already 
been obtained. In the present paper we solve the problem of established horizontal flow of 
generalized Newtonian and Bingham liquids [7-9] in an annular capillary. 

Let R: and R2 be the internal and external radii, respectively, of the tubes forming the 
annular capillary, and r the radial cylindrical coordinate of a liquid particle in the flow 
cross section. 

The flow of a generalized Newtonian liquid in a capillary under the action of a hydra,,lic 
pressure gradient I proceeds within the expanding ring r, ~ r S r= in such a way that the 
veloc2ty v(r) at some intermediate r = ro is a maximum and. decreasing nonsymmetrically in 
the direction of the walls, is a minimum at r = rl and r = r2. We can accordingly distinguish 
two flow zones with different velocity laws vj(r) in the flow cross section. In the first 
zone (j = i. rl ~ r ~ ro) the velocity gradient dv,(r)/dr ~ 0 and in the second zone (j = 2, 
ro S r S r2) dv2/dr ~ 0o 

Considering the balance of the forces applied to an elementary annular layer of liquid 
in each zone we have 

&cj(r)/dr + ~i(r)/r :: (--t)JpgI, <l) 
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